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SUMMARY

The actuator surface (AS) concept and its implementation within a differential, Navier–Stokes control
volume finite-element method (CVFEM) are presented in this article. Inspired by vortex and actuator disk
methods, the AS concept consists of using porous surfaces carrying velocity and pressure discontinuities to
model the action of lifting surfaces on the flow. The underlying principles and mathematics associated with
AS are first reviewed, as well as their implementation in a CVFEM. Results are presented for idealized
2D cases with analytical solutions, as well as for the 3D cases of a finite wing and an experimental
wind turbine. In the case of the finite wing, wake induction is well handled by the model with accurate
predictions of induced angles and drag when compared with the Prandtl lifting line model. Comparisons
with volume force approaches, often used to model the action of propellers or wind turbine blades in
a simplified analysis, show that the AS concept has some interesting advantages in terms of accuracy
and respect of flow physics. This new approach is easy and rapid to embed in most computational fluid
dynamics (CFD) methods. It is applicable to a wide range of problems involving thin lifting devices like
finite wings, propellers, helicopter or wind turbine blades. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

As widely illustrated in the computational fluid dynamics (CFD) literature, for a variety of complex
mechanical systems where the level of physical detail is either unrealizable or unnecessary, CFD
simulations make use of distributed volume forces to represent the action of fans [1], propellers [2],
helicopter [3–6] or wind turbine blades [7], or even bluff bodies [8]. The prescription of volumes
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and force distributions acting within them is important issues that can strongly influence the
flow solution. With regards to fans or propellers, the actuator disk concept introduced by Froude
should also be included in this group of simplified models; however, the action of the modeled
device is spread over a surface rather than a volume. Volume forces become surface forces and
discontinuities occur at the actuator disk surface in flow properties like pressure and velocity (see
for example [9]). Inspired by the actuator disk concept, this article proposes the use of a new type
of singular surface, called an actuator surface (AS), to represent the action of any lifting surface
within a differential Navier–Stokes, control volume (CV) finite-element-based method. An AS is
simply a geometric surface carrying velocity and pressure discontinuities, as well as surface forces,
which are all determined from the circulation along the lifting sections of the AS. Equivalently,
an AS is a porous vortex sheet that represents the bound vorticity system of a lifting device.
The flow induced by the AS is solved using a CFD method that has been adapted to account
for the kinematic and dynamic influence of the AS. As for volume force approaches, the trailing
system of vorticity is naturally modeled by the CFD method. To situate the AS approach, Figure 1
presents a possible classification of models for lifting-device aerodynamics by sketching different
approaches to model e.g. a lifting wing. On the left part of the figure, vortex models regroup
lifting-line, vortex–lattice and panel models. These models are based on distributions of vorticity
singularities whose magnitudes are set either based on kinematic conditions (surface tangency)
or from blade-element analysis (in the case of the lifting-line approach). On the right part of
the figure, approaches are regrouped under the ‘finite-element models’ banner to point out that
their underlying principles consist of solving the differential equations describing the flow (the
Navier–Stokes equations) using a CFD methodology. The ‘Navier–Stokes’ approach consists of
the use of a CFD approach to model the flow around the wing where the wing is modeled by its
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Figure 1. Schematic representation of aerodynamic models for a lifting wing.
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1266 C. SIBUET WATTERS AND C. MASSON

true geometry and a no-slip (or tangency) condition at its surface. On another level, volume force
and AS approaches model the wing either by a volume or an AS that do not exactly spouse the
true wing geometry. A system of forces is prescribed to represent the action of the wing on the
flow, whose magnitude is evaluated using local blade-element analysis. As will be shown, the AS
represents a potentially interesting concept to add to CFD methodologies with relative advantages
over volume force approaches. Indeed, the action of the modeled device is spread over a surface
rather than a volume, preventing arbitrary choices of volume thickness and force distributions
with subsequent dependency on the flow solution or computational instabilities. Furthermore, the
AS is perfectly compatible with the vorticity principles of creation and evolution of vortices, and
the Kutta–Joukowski theorem for lift production, whereas volume force approaches fail to always
comply with such principles and as a consequence, may not reproduce the genuine characteristics
of the flow.

This article is divided into three sections: (1) description of the mathematical model for the
AS, (2) description of the numerical method and of its necessary adaptations to include the AS
model and (3) presentation of results obtained using this new concept. The results focus on
the validation of the AS concept with 2D and 3D situations having analytical solutions. As a
final demonstration, the case of wind turbine aerodynamics is studied by using rotating ASs.
Comparisons with either analytical or experimental results and with results from volume force
approaches are made to gain insight into the capabilities of the AS concept.

2. MATHEMATICAL ASPECTS OF ASs

The theories presented in the following sections are taken from classical concepts of incompressible
fluid mechanics. The original idea presented concerns the introduction of the AS defined as a
porous surface of velocity and pressure discontinuities in the flow, to represent the action of a lifting
device. Two conditions are imposed in the AS definition to guarantee vorticity flux conservation
and the absence of energy exchange in the process of lift creation for inviscid flows. These two
conditions are sufficient to fix the kinematic and dynamic influence of the AS on the flow.

2.1. ASs: implications
Figure 2 shows a simple model of a rectangular AS, fixed and immersed in an oncoming uniform
flow, which can be used for the analysis of finite-wing aerodynamics. Streamlines and contour
plots of pressure jumps across the AS are drawn to illustrate qualitatively the typical action of an
AS on the flow. A cartesian (X,Y, Z) axis is defined so that the X axis points in the flow direction
and the AS is a flat surface perpendicular to the Z direction, lying in a plane of equation z= ZP .
By convention, the discontinuities occur in the Z direction, which means that the discontinuity
of a variable � (� is alternatively u,v,w or p, the flow velocity components and pressure) is
measured as

��=�ZP+−�ZP− (1)

where implicitly, the jump �� is a function of the location X,Y on the AS and where �ZP+ and
�ZP− are the limit values of the flow characteristics on both sides of the AS:

�ZP+ = lim
z→zP+,z>zP

�, �ZP− = lim
z→zP−,z<zP

� (2)
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Figure 2. A simple actuator surface.

As a first condition, we require that the AS respects the condition of zero net flux of vorticity for
any CV that intersects the AS surface. For the AS of Figure 2, this is reflected by the following
constraint on the flow velocity discontinuities �u and �v:

��v

�x
− ��u

�y
=0 (3)

This constraint ensures that the circulation of the velocity jump around any closed contour C
drawn on the AS is null, since from Green’s theorem∫

C
�u�x+�v�y=

∫
D

(
��v

�x
− ��u

�y

)
�A=0

where D is the region bounded by C . Equation (3) guarantees that the vertical component of the
vorticity through the AS is continuous, hence the net flux of vorticity for any CV that intersects
the AS is null. This constraint finds its equivalent in vortex models, when analyzing the bound and
trailing systems of vorticity and where the trailing vorticity is linked to the spanwise variations
of the bound vorticity using the principles of vorticity conservation. In vortex models in addition,
vorticity must be modeled explicitly in the wake whereas here, the flow around the AS is solved
using a finite-volume CFD method, which implicitly accounts for the wake dynamics.

From the point of view of dynamics, since the AS is porous, when a fluid particle crosses
it, the particle momentum undergoes a sudden variation, which must be explained by a set of
impulsive forces attached to the AS. In the direction tangent to the AS, the expression of these
forces (per unit surface area) is given by the product of the mass flux through the AS and the
velocity discontinuities, in this case

fX =�wav�u and fY =�wav�v (4)
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1268 C. SIBUET WATTERS AND C. MASSON

where the suffix av indicates that the value considered for the w component is an average of the
component limit values on both sides of the AS (in the particular case of the vertical component,
�w=0 for mass conservation reasons and w is continuous through the AS). For the axial flow
velocity component u, the expression of uav is:

uav= uZP−+uZP+
2

=uZP−+ �u

2
=uZP+− �u

2
(5)

As a second condition in the AS definition, we now require that the attached system of forces
does not exert a mechanical work on the flow, i.e. fXuav+ fY vav+ fZwav=0. This condition is in
agreement with the action of the AS modeling only processes linked to lift generation, which by
definition is perpendicular to the local velocity. From this constraint, we deduce the expression of
fZ as:

fZ =−�(uav�u+vav�v) (6)

The normal component fZ implies that there must exist a pressure jump at the AS to balance for
this normal component, whose magnitude is exactly equal to fZ , hence it is found that: �p= fZ .
Equation (6) is a Bernoulli type equation and ensures that total pressure is constant on both sides
of the AS. It is indeed easy to verify that:

pZP−+ 1
2�(u2ZP−+v2ZP−+w2

ZP−)= pZP++�p+ 1
2�(u2ZP++v2ZP++w2

ZP+)

Generalizing the AS mathematical description to the case of moving ASs or to ASs of different
shapes than the flat surface is straightforward when considering the vorticity vector associated with
the AS. Calling �V the vector associated with the velocity discontinuity of the AS, and nAS the
unit vector normal to the AS at the point where we examine the AS action on the flow, the AS is
also a vortex sheet of intensity described by the vorticity vector c=nAS×�V. The first condition
that was set on the AS in Equation (3) can be generalized as a condition on the divergence of the
vorticity vector:

∇ ·c=0 (7)

Turning to the AS dynamic action on the flow, it is found that in the general case, the attached
system of force, per unit area of the AS, is given by a relation of the Kutta–Joukowski type

f=−�Vav,rel×c (8)

where Vav,rel is the average flow velocity measured relative to the AS: Vav,rel=Vav−VAS and
VAS is the velocity of the AS at the location where the force is evaluated which, in the general
case, might not be null (moving or deforming AS). Equation (8) expresses that in a reference
frame where the AS appears fixed, total pressure is constant across the AS since the Navier–
Stokes equations, once recast under the form ∇H =�Vrel×x+f′, and after integration across the
AS, gives �H =(�Vav,rel×c+f) ·nAS=0 (where H is the total pressure, x is the flow vorticity
and f′ corresponds to the density of the external force). It is worth mentioning that the form of
Equations (7) and (8) guarantees that the modeled action of the AS on the flow is independent of
the convention used to identify the two sides (lower and upper) of the AS and guarantees invariance
of the formulation with respect to frame of reference or choices of system coordinates.

If the AS is analyzed in an inertial frame of reference where it is not moving (VAS=0), then
no power is transferred between the flow and the AS. In the general case of a moving AS, it is
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trivial to demonstrate from Equation (8) that f ·Vav,rel=0. Rewriting this last equation by adding
the term f ·VAS on each side raises f ·(Vav+VAS)= f ·VAS where the vector sum V=Vav+VAS
corresponds in fact to the absolute average flow velocity at the AS. This yields:

f ·V= f ·VAS (9)

This last identity means that the mechanical power transmitted by the AS to the flow (the left
part of the equation) is equal to the power it takes to keep the AS in motion (the right part). The
case of the finite wing is rich in learnings: the integration of all surface forces results in a total
force exerted by the AS on the flow where the vertical component is the lift, and the horizontal
is the induced drag. In inviscid flow, a fixed wing does not produce nor dissipates energy within
the fluid, however, a moving one encounters an induced drag force, which necessitates an external
source of energy. This energy serves to continuously create, when advancing, the vortical wake:
this is the price to pay to create vorticity in inviscid flows. When they occur, exchange of energy
between the AS and the flow happen exclusively on the AS, since the wake is assumed to be a
free vortex sheet and therefore cannot exchange energy with the flow [10].

Although developed in agreement with basic fluid mechanics principles, the AS is a singular
vortex sheet since it is allowed to be porous to the flow. From Helmholtz laws, we would expect
a vortex sheet that represents a lifting surface to lie along flow streamlines, with induced velocity
and pressure discontinuities given by �V=c×nAS and �p=−�Vav,rel ·�V as found in text-
books [10, 11]. The condition on the vortex sheet that it must lie on the flow streamlines would in
fact be a sufficient condition to fix the vortex sheet intensity and deduce its action on the flow. Here
however, the intent is not to deduce the AS intensity from a consideration of the flow tangency, but
rather to impose a distribution of velocity discontinuity on the AS surface that represents a known
distribution of circulation along the span of a lifting device. Fixing the distribution of circulation
along the span is achieved using blade-element analysis, as presented in the following section.

Although developed according to inviscid flow theory, the AS concept can be integrated into
any Navier–Stokes solver able to model for viscosity (and eventually turbulence) effects in the
flow under analysis. However, the AS as presented here is unable to model the action of viscosity
that would occur in boundary layers, and therefore viscous drag of a body cannot be modeled. As
with vortex flow models, the AS focuses on the modeling of vorticity in the flow, and therefore of
wake induction effects on lifting-device aerodynamics.

2.2. Blade-element analysis

Blade-element analysis is used to determine the values of circulation along sections of a lifting
wing (either in translation or rotation) to be modeled using the AS concept. Figure 3 presents a
sketch of a wing section of chord length c, where the incoming flow experienced by the airfoil
corresponds to the relative velocity Vav as presented in the previous section. Once the local
flowfield characteristics are known, as well as wing geometrical (twist and chord distributions)
and operational (pitch angle, motion of the wing) characteristics, it is possible to calculate the
local angle of attack � of the incoming flow. Using the Kutta–Joukowski theorem, the following
expression for the circulation of velocity around the airfoil � can be found:

�= 1
2c‖Vrel‖Cl (10)

where Cl is the lift coefficient of the airfoil defining the blade section, a function of the relative
angle of attack � and the local Reynolds number. Note that these equations deviate from the classical
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Figure 3. Cross section of a wing.

equations found in textbooks [12], since here the local velocity Vrel is used instead of the usual
(often uniform) inflow velocity U∞ found far upstream. The formal proof of the Kutta–Joukowski
theorem is indeed often presented for 2D irrotational flows whereas here we are confronted with
3D inviscid flows that can be rotational. The derivation leading to Equation (10), valid for 2D
irrotational flows, is here assumed to apply in the case of the AS. Schmitz and Chattot [13] have
studied this hypothesis using a coupled Navier–Stokes/vortex-panel solver for the study of wind
turbine aerodynamics and have found that deviations from Equation (10) are to the order of a few
percents, especially when the blade is experiencing stall. In practice, the evaluation of Vav can be
made on the wing or at some location upstream; Vortex methods [3] that are based on lifting lines
usually estimate the wing bound circulation from Equation (10).

2.3. Distribution of discontinuities on planar AS

Once the circulation � around a section of a planar AS is known, the task consists of distributing
this circulation along the section in the most appropriate way. The line integral of �u along a
cross section must be equal to the circulation � around this section. For the singular surface of
Figure 2, calling c the chord length of one section, this can be mathematically expressed as:∫ c

0
�u dx=� along a line (z= zP ; y= yline)

The constant distribution �u=�/c is the simplest but performs poorly since it sets rapid
variations of the �u field, which are hard to manage numerically without instabilities in the flow
solution. Distributions respecting continuity of �u(x, y, z) are more appropriate. In this work, a
simple parabolic distribution is assumed

�uP = 6�

c3
xP(c−xP) (11)

where xP is the distance from a point P on the AS to the leading edge of the wing along the x-axis
direction, as shown in Figure 4.

Shen et al. [14] and Dobrev et al. [15], who use AS models to study wind turbine aerodynamics,
where the AS is a surface of pressure discontinuity only, have used more sophisticated distributions,
which are based on the actual, inviscid distributions occurring around the airfoils defining the
blades (Shen et al. have limited their analysis to 2D problems). These distributions are therefore
functions of the airfoil profile, the angle of attack and the Reynolds number. In this article, the
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Figure 4. Flat surface modeling the tapered wing.

parabolic distribution proved to be simple and effective as demonstrated by the results obtained
and presented in Section 4.

The distribution of �v is deduced from Equation (3) and the boundary condition �v=0 at
xP =0:

�vP = 6�

c4
�c
�y

(x3P −cx2P)+ 1

c3
��

�y
(3cx2P −2x3P) (12)

All 3D simulations presented in this paper are performed using the above distributions of �u
and �v.

3. NUMERICAL IMPLEMENTATION OF THE AS MODEL

3.1. Presentation of the model

To solve the set of partial differential equations describing the flow (the Navier–Stokes equations
in their incompressible, inviscid, steady-state form), the 2D and 3D CVFEM of Masson et al.
[16] and of Saabas [17] are used with appropriate modifications. These methods are typical, in
their formulation, of modern commercial CFD software such as CFX Ansys and Fluent. In-house
CVFEM codes are preferred here since the flexibility of commercial softwares is not sufficient to
implement the proposed mathematical model. The 2D method is used to model problems like wings
of infinite aspect ratio or actuator disks (the 2D method is able to model axisymmetric flows),
whereas the 3D method is used for the analysis of rectangular ASs in translation or in rotation. For
a better understanding of the AS implementation, a brief review of the 2D CVFEM follows using
more or less the same notation as in Reference [16]. Owing to the extreme similarity between the
2D and 3D CVFEM algorithms and inner characteristics, the following is also applicable to the
3D CVFEM.

As displayed in Figure 5(a), in the 2D CVFEM, triangular elements are drawn between nodes
(shown as bold crosses) to discretize a 2D domain that is the plane of a 2D Cartesian coordinate
system (x, y) along which flow velocity components are (u,v), respectively. Inside every triangular
element, segments are drawn that connect the center of gravity (shown as bold circles) to the
middle of the triangle sides. These segments are in fact control surfaces (CS) across, which mass
and momentum fluxes are evaluated. This is presented in Figure 5(b), which shows how three CSs
are defined inside one of the elements surrounding the central node of Figure 5(a), highlighted
by a gray-coloured dashed triangular frame. Only two out of these three CSs (CS1 and CS3) are
attached to the CV surrounding the central node of Figure 5(a), highlighted as a shaded area. Every
node has its own CV and, through application of mass and momentum conservation principles to
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Figure 5. Details of the 2D CVFEM: element subdivision.

each one, the ultimate goal of the numerical method is to develop discretized equations of the
general type

a�
i �i =

∑
i,nb

a�
i,nb�i,nb+b�

i (13)

where � is used to represent either the components of velocity (u,v) or the pressure p :�=u or
v or p. a� and b� are discretization coefficients that establish the relative influence between the
central node (numbered using the index i) and its neighbors (referred to as i,nb).

As regards pressure (�= p), discretized equations are built by applying mass conservation
principles inside every CV. Mass fluxes occurring across the CSs of every finite triangular element
are estimated from the integration of velocities across the CSs, but velocities are written as a
combination of a pseudo-velocity and local pressure gradient (Rhie-Chow interpolation). More
precisely, the velocity components used to derive mass fluxes are cast under the form

um = û+du
(

−�p
�x

)
element

(14)

vm = v̂+dv

(
−�p

�y

)
element

(15)

where û and v̂ are the components of the pseudo-velocity field, du and dv are the pressure
coefficients and the subscript element is used to indicate that the pressure gradient is relative to
the triangular element. For example, for the element shown in Figure 5(a), the contribution of
mass fluxes to the global balance of the CV centered around node 1 is ṁ1−ṁ3, where ṁ1 and ṁ3
are the mass fluxes across CS1 and CS3, respectively. Since the addition of all mass fluxes must
be null for each CV in the solution domain, the algebraic decomposition of CS mass fluxes for
every element, and then, their further assembly for each CV, yields a discretized set of equations
relating pressures between nodes and their neighbors of the type described in Equation (13). In
the algebraic decomposition process, pseudo-velocities and pressure coefficients, which are stored
at the domain nodes, are linearly interpolated at the center of all CSs of a triangular element and
are assumed to prevail over the CS, while discretization of pressure gradients is made assuming
that pressure varies linearly over the triangular element.
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As regards momentum components (discussing only the case �=u), the balance made on each
CV to express the x-component of Newton’s law includes momentum fluxes through CSs, external
and body force contributions and eventually diffusive contributions to represent the action of
viscosity (or turbulence in RANS modeling). The aui and aui,nb terms of Equation (13) arise from the
algebraic decomposition of CS momentum and diffusive fluxes and their further assembly for the
CV surrounding node i . Diffusive fluxes are accounted for by assuming a linear variation of the u
component within one element whereas momentum fluxes require the introduction of a convection
scheme. Across one CS, the momentum flux is indeed calculated as ṁ j ×uCS j where uCS j is the
value of the convected variable across (and averaged over) CS j . The role of the convection scheme
is to establish a relation of the type uCS j =c1 u1+c2 u2+c3 u3: in this work, the first-order and
second-order mass-averaged-weighted (MAW) schemes developed, respectively, by Saabas [17]
and Tran et al. [18] have been used. The bui term of Equation (13) comes from the contributions
of pressure and the x-component of the external force acting on the CV. Pressure contributions
are calculated again assuming a linear variation of pressure within every triangular element (and
using Stokes’ theorem inside the element).

The further split of the bui term shows how pseudo-velocities and pressure coefficients are
evaluated by the CVFEM. To illustrate this, Equation (13) is recast under in the following form:

aui ui =
∑
i,nb

aui,nbui,nb+ b̃ui +�CV

(
−�p

�x

)
CV

(16)

where the b̃ui term is uniquely due to the contribution of external forces. Using Stokes’ theorem,
the pressure term distinctively appears as the product between the volume of the CV, �CV and a
pressure gradient averaged over the CV. Contrary to Equations (14) and (15), the pressure gradient
is averaged over the CV rather than over the element: this particularity provides a mechanism to
avoid spurious oscillations in the CVFEM. When both sides of the last equation are divided to
form an expression like Equation (14), it appears that:

ûi =
∑

i,nb a
u
i,nbui,nb+ b̃ui
aui

and dui = �CV

aui
(17)

The solution algorithm prescribes the operations to be performed sequentially before the full
set of discretized equations is ready to be solved algebraically. As in the original CVFEMs, the
SIMPLE solution algorithm is employed and tridiagonal matrix-type algorithms are used to solve
the discretized equations since structured meshes have been exclusively used in this work.

Boundary conditions are either of the Dirichlet (fixed values) or Neumann (see Reference [19]
for a deeper explanation of outflow treatment) or periodic/anti-periodic type (in the case of the
two-bladed wind turbine in uniform flow studied in Section 4.2.3). As regards the pressure equation,
the algebraic system of discretized equations is indeterminate since two pressure fields differing
by a constant are both valid flow solutions. To solve for this indetermination, the pressure can be
prescribed at one node of the mesh. However, to ensure that the iterative process converges toward
a stable pressure field, pressure values at the exit nodes can also be all set equal to a constant
(providing the exit is far enough so that this approximation becomes true). In the case of rotating
ASs, the simulations are performed in a rotating, non-inertial, frame of reference to solve for the
steady flow where the oncoming flow is helicoidal (since it is the sum of a uniform axial inflow
and a rotating one). Other adaptations have been necessary to handle the rotational component of
velocity and are presented in Section 4.2.3.
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3.2. Implementation of the AS

Properly handling the occurrence of velocity and pressure discontinuities and the associated system
of external forces of an AS in any CFD method requires substantial adaptations to the underlying
method. In the case of finite-volume methods, the following principles should be regarded as
guidelines when building mass and momentum balances for CVs that are linked to an AS:

• The component of mass fluxes tangent to the AS must account for the discontinuities in
velocity.

• The momentum balance must account for the contribution of the system of forces associated
to the AS (presented in Equation (8)).

• The pressure contribution to momentum balance or to mass flux (when pressure gradients
influence mass flux) must also account for the pressure jump. It is important to note that the
contribution of the pressure jump, at the intersection between the AS and the CV, acts to
cancel the contribution of the force component normal to the AS.

In the case of the collocated 2D CVFEM employed in this work (it is noteworthy that the
following reasoning is readily applicable to the 3D CVFEM), it is more convenient to discretize an
AS by placing nodes directly on its surface as illustrated by Figure 6(a), which shows an AS and
the CV for one of the nodes located on the AS (the AS is depicted using a thick bold line). The
CVs of the nodes that define the AS are not the only CVs of the solution domain where specific
adaptations are required: all other CVs whose nodes are connected to at least one node of the
AS need to be treated adequately. To perform these adaptations, it is essential to first orient the
AS, i.e. to define on which side the discontinuities in velocities and pressure are to be applied, as
already presented in Section 2.1. Triangular elements that form a part of CVs near the AS can then
be classified depending on which side of the AS they rest: when an element is on the side where
discontinuities must be applied, and has some connection to the AS nodes, it will be referred to
as being part of the set of elements on the other side (SEOS). At the AS nodes, the values of the
variables stored do not account for discontinuities: in a sense, AS nodes are not part of the SEOS
even though they are infinitely close to it. But for triangular elements that are part of the SEOS,
the values of the variables to consider when dealing with AS nodes must take into account the
corresponding discontinuities appropriately. This is the underlying idea regarding the necessary
adaptations summarized below:

• During evaluation or algebraic decomposition (when building the pressure or momentum
equations) of mass or momentum fluxes, for all triangular elements that are part of the SEOS,
if one or two of the three nodes defining the element is a node located on the AS:

◦ Augment the values of u,v, û and v̂ of the AS node(s) involved by �u,�v,�u and �v,
respectively, when evaluating or algebraically decomposing mass or momentum fluxes.
Since the discontinuities are tangent to the AS, setting the discontinuities of pseudo-
velocities equal to those of the velocities is correct from the point of view of mass
conservation.

◦ Augment the values of pressure at the AS node(s) involved by �p when evaluating or
algebraically decomposing the pressure gradients of Equation (16) or of Equations (14)
and (15).

◦ Calculate the AS-attached external force contributions to CVs of AS nodes. Note that
the component of the force normal to the AS cancels with the pressure discontinuity.
Hence, when calculating the pressure contribution to a CV momentum balance, the specific
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Figure 6. Details of the 2D CVFEM: treatment of the AS.

contribution due to the pressure jump cancels with the normal force contribution. The
remaining pressure contributions are therefore calculated from the assembly of the pressure
gradient volume integration within each element defining the CV. However, components
of the force tangent to the AS need to be explicitly taken into account (the fx and fy
expression of Equation (8)). Since these components are equal to the product of the local
discontinuity in velocity and mass flux crossing the AS, to be consistent with the principles
of the CVFEM, for a CV of an AS node, the mass flux crossing the AS is calculated as the
sum of all mass fluxes crossing the CSs of the CV on one side of the AS only. Figure 6(c)
provides an illustration of this calculation in the 2D method: ṁAS corresponds to the mass
flux crossing the AS and is equal to the sum of all mass fluxes crossing the CSs on the left
side of the AS. The mass fluxes through CSs are those used during the construction of the
algebraic equations expressing mass balances, since mass conservation is guaranteed by the
CVFEM, the choice of side where the sum of mass fluxes is calculated has no consequence
on the converged solution.

3.3. Overall solution algorithm

When the loading of the AS is prescribed and is independent of the flow, a unique flow solution
exists that respects the principles of mass, momentum and vorticity conservation. In the numerical
solution of this problem, the adapted CVFEM simply converges toward a single flow solution, as
would the CVFEM also converge if a prescribed set of volume forces were used instead to model
a lifting body. However, when the loading of the AS is dependent on the flow, an iterative process
must take place:

1. Initialization of the flow solution (generally to uniform inflow).
2. Estimation of AS(s) loading: in the case where lifting devices are modeled, this consists of

evaluating relative flow angles and velocities at control points (to be defined in Section 4)
and, from considerations of airfoil aerodynamic characteristics, estimate the distribution of
circulation at every section of the AS. Once circulation is known, the action of the AS is
modeled using the distributions of Equations (11) and (12) for velocity discontinuities and
Equation (8) for external forces.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 62:1264–1298
DOI: 10.1002/fld



1276 C. SIBUET WATTERS AND C. MASSON

3. Application of adapted CVFEM to find the flow solution given loading defined in Step 2.
4. Re-estimation of the AS loading: an iterative process takes place between Steps 2 and 3 until

convergence of the flow solution.

In Step 3, it should be kept in mind that the CVFEM is also undertaking an iterative process to
find a fully converged flow solution. But, it is not always necessary to use the converged solution
before re-evaluating the AS loading, thereby accelerating the global convergence of the four-step
process. To ensure a smooth convergence process, the AS action on the flow can also be introduced
gradually. For the particular problem of the uniformly loaded actuator disk, this approach proved
to be essential.

4. RESULTS

The concept of the AS is first applied to simple 2D problems having analytical solutions and
for which the distribution of discontinuity is given: excellent agreement with flow properties and
force evaluation is found. The method is then applied to the 3D problem of the tapered wing
in translation and is compared with the results of the Prandtl lifting line. Finally, the method is
applied to wind turbine aerodynamics by using rotating ASs.

4.1. 2D problems

4.1.1. The segment with uniform velocity discontinuity. The first validation of the proposed
approach concerns the simple case of a 2D segment along which a uniform velocity discontinuity
is applied in the segment direction. This 2D segment is immersed in a uniform flow, therefore
the exact analytical solution is the combination of the uniform flow (of magnitude U∞) plus the
perturbed flow due to the velocity discontinuity, which can be attributed to a vorticity distribution,
according to the Biot–Savart Law. The solution domain is a rectangle oriented in the direction of
U∞, and the value of the uniform velocity is prescribed on three faces of the domain, while the last
face is defined as an outlet boundary. Figure 7 presents the streamlines of the numerical solution as
well as isocontours of the vertical velocity component for the case of a segment-oriented parallel
to the uniform inflow. Figure 8 presents the same results, but for the perturbed solution only, i.e.
for the flow induced by the vorticity distribution. This flow is deduced from the numerical solution
by subtracting the value of U∞ from the computed velocity field. In all figures, the AS is drawn
using a bold dashed line. In Figure 8, the left side shows the solution obtained using a coarse
grid of approximately 2500 nodes whereas the right side shows the solution obtained using the
same domain dimensions but for a much finer grid of over 400 000 nodes (for clarity, only one
mesh point over 4 is shown in the drawing). In the case of the coarse mesh, the streamlines of
the numerical solution are not perfectly circling the segment of discontinuity as they theoretically
should, based on the analytical solution. In the case of the fine mesh; however, the streamlines
shape is very close to perfect circles, although some irregularities can still be observed. In fact, it
has been verified that the mesh resolution guaranteeing grid independence for the problem of the
segment with uniform velocity discontinuity has to be much finer than the mesh resolution that
would guarantee grid independence when studying the segment with a parabolic distribution. The
uniform distribution is a more difficult distribution to study with the CFD method because of the
sharp discontinuity it induces at the edges of the segment.
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Figure 7. Streamlines and isocontours of vertical velocity for the 2D segment.
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Figure 8. Streamlines of the perturbation flow as a function of spatial discretization.

To evaluate the impact of the uniform inflow on the perturbed solution, numerical computations
have been performed for incoming flow angles of 0, 10, 30, 60 and 90◦ with respect to the segment
representing the AS and for different ratios between U∞ and attached vorticity (see Figure 9 for
an illustration of the different configurations studied). For all solutions, the total external force that
the vorticity segment induces on the flow has been calculated. It has been verified for all cases
that the integrated component of the force in the direction of the incoming free velocity is always
very close to zero (to within a few percent of the lift), while the integrated normal component
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Figure 9. Different configurations for the 2D segment.

Figure 10. The ring vortices system of a uniformly loaded actuator disk.

of the force is always very close (within 4%) to the Kutta–Joukowski relation, which states that
induced lift is equal to �U∞� (where � is the total circulation �=c�u,c being the length of the
vorticity segment).

4.1.2. The actuator disk. As regards the well-known actuator disk problem, it is possible to
distinguish two vortex systems that induce perturbations in the incoming flow: the first vortex
system consists of a hub vortex of constant strength together with radial vorticity distributed on
the actuator disk and axial vorticity on the slipstream surface. The slipstream surface should be
geometrically defined by the trajectories of the particles passing through the actuator disk contour.
Determining these trajectories is not a trivial problem [20] and for the sake of simplicity, the
geometry is taken as a line extending from the actuator disk contour to downstream infinity. This
first vortex system conserves vorticity flux and induces only azimuthal velocities in the flow. The
second system consists of ring vortices distributed over a contracting tube shed from the edge
of the actuator disk and extending to downstream infinity (see Figure 10). This system induces
radial and axial components of the perturbation velocities, and it is also responsible for slipstream
contraction.

The present method, in its axisymmetric version, has been used to simulate the action of the
second system by studying a constant surface distribution of velocity discontinuity of magnitude
� for the ring vortices. These conditions correspond to those of a uniformly loaded actuator disk.
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Figure 11. Solution properties for the case of the uniformly loaded actuator disk.

The full analytical solution to this problem can be found in the literature [21]; among various
results, the variation of the perturbation axial velocity at the axis of symmetry is given by

ux (r =0, x)= �

2

(
1+ x√

R2+x2

)

where R is the radius of the actuator disk located at x=0 and ux is the axial velocity. The
computations have been done with a uniform inflow velocity of 10m/s, a 1m radius actuator disk
and a velocity discontinuity � of 1m/s. Some convergence issues were encountered, mostly due to
instabilities developing at the outflow boundary (the AS used here indeed extends up to the outflow
boundary). Building successive solutions to the problem by stepwise increasing the AS solves this
problem and ensures rapid convergence. Figure 11 presents isocontours for the axial and radial
velocities ux and ur , as well as the static pressure p. In this figure, the AS is represented by a
bold dashed line; note that the tangential component is null since only the second vortex system
of the actuator disk is studied.

Figure 12 presents a comparison between numerical and analytical solutions of the centerline
velocity variation. The agreement is very good.
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Figure 12. Centerline velocity variation.

4.1.3. Axisymmetric actuator disk applied to horizontal-axis wind turbines (HAWTs). The embed-
ding of an actuator disk within a CFD method is an area of increasing interest in the field of
horizontal-axis wind turbine (HAWT) aerodynamics [22] and the proposed CVFEM has been
applied using the axisymmetric actuator disk concept [23] and blade-element theory. Whereas the
present formulation uses surface forces, almost all other models represent the actuator disk by a
set of volume forces only [24–26]. In Reference [23], the results produced by the proposed AS
method have also been compared with the results of a previous method, developed by the same
authors, in which the velocity field is not allowed to be discontinuous and the actuator disk is
analyzed as a source of external force only (resulting in fact in a pressure jump) to mimic the
behavior of volume force methods. As observed by some authors [25, 26], spurious oscillations (of
a checkerboard type) in flow properties occur in the vicinity of the actuator disk when the flow is
assumed continuous; however, using the representation of the AS as presented in this article, such
anomalies are not observed. Furthermore, the relative differences in predicted mechanical power
output between the two methods have been evaluated to be 5% on average (based on studies of
four wind turbines).

4.2. 3D problems

4.2.1. The finite wing. The problem of the finite wing in uniform translation is a necessary step
to verify the proposed method’s capability to model wake induction on a lifting device. If the
method performs adequately for a wing in translation, then it is expected to perform well for a
wing in rotation.

Twenty-four forms of the tapered wing have been studied derived from the combinations of 6
taper ratios ct/cr (0.1;0.2;0.4;0.6;0.8;1.0) and 4 aspect ratios AR(4;6;8;10). The same span
length b of 10m, inflow velocity of 50m/s and pitch angle � of 5◦ have been set for all the 24
cases. AR is defined as the ratio of b2 to the wing area.

The AS used to model the finite wing is a flat tapered plate parallel to the incoming flow (of
velocity U∞ along the x direction), whose dimensions are those of the wing planform shown
in Figure 4. The solution domain is a cube with sides of length 30b; the flat plate representing
the wing is located 10b downstream of the inlet and at the center of (y, z) planes. The mesh is
refined in the vicinities of the wing tips and around the leading and trailing edges, and nodes
are placed at mid-chord of the wing as control points where the induced angle �i , evaluated
using �i = tan−1(−wav/U∞), is measured (see Figure 13 for an illustration of mesh details around
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Figure 13. Mesh details around the actuator surface.

Table I. Meshes and needed RAM.

Mesh M1 Mesh M2 Mesh M3

Number of nodes for domain discretization 41×31×49 81×61×97 161×161×193
Number of nodes for wing discretization 6×16 12×32 24×64
RAM needed (approximately) 100Mb 800Mb 6.4Gb

the AS). To estimate the loading of the AS, the lift coefficient is calculated using the thin airfoil
relation Cl =2�(�−�i ), so that the circulation around a section is given by �=�cU∞(�−�i ).
Velocity discontinuities are distributed using Equations (11) and (12) and the associated system of
forces using Equation (8).

Table I summarizes the characteristics of the three meshes used to discretize the solutiion domain
along with the total RAM needed to analyze the problem. Since mesh M3 requires a substantial
amount of computational power, few computations are performed using this mesh.

Total lift L of the wing is calculated from the surface integral of pressure jumps across the
AS while induced drag Di , which is equal to the in-plane load that results from the crossflow
experienced by the AS, is determined from momentum consideration using:

Di =−
∫ ∫

S
��uwav dS (18)

In these equations, �wav dS corresponds to the mass flux passing through an elementary surface
of area dS, and is in fact evaluated from the assembly of mass fluxes across all CS on one side of
a CV as discussed in Section 3.2.

Figure 14 presents (a) a downstream view of streamlines concentrated at the tips of a wing
of AR=10 and taper ratio of 1, and (b) the same view, but with a slight inclination of the x
axis to present downstream development of tip vortices. In the exact, analytic solution to this
problem [20], the downstream vorticity system exhibits a natural tendency to roll up in singular,
hardly predictable, behavior. To use vortex methods to analyze the aerodynamics of a lifting
device, it is necessary to rely on a specific model for the trailed vorticity system usually by
setting, in advance, the shape of this system. The shape can be set fixed or moving with the flow.
When set moving, singular behaviors are noted and the problem becomes less tractable. Figure 14
indicates that vorticity creation and advection is well modeled by the present method: �u and
�v discontinuities result in the creation of vorticity within the flow (with a major component
along the x axis), whose evolution is naturally taken into account by the Navier–Stokes equations.
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Figure 14. Highlighting tip vortices: flow streamlines.

In the actual, viscous flow of a finite wing, boundary layers occur along the wing surface but, for
large Reynolds number, they are very thin and outside them the flow acts according to inviscid
flow theory. At the trailing edge of the wing, these viscous layers continue to exist in the wake
and viscosity effects act to rapidly equalize the values of velocity and pressures across the wake.
In the AS, the component of lateral velocity discontinuity cancels abruptly at the trailing edge,
however, the method reproduces with good accuracy the results of the Prandtl lifting line theory.

To present the influence of the convection scheme order, isocontours of the calculated component
wav of the flow crossing the AS are drawn in Figure 15 for a wing of AR=4 and taper ratio
of 1, using either the first- or the second-order convection scheme with mesh M2. Along the
entire wing span, the flow component wav is observed to decrease from positive (upwash) to
negative (downwash) in accordance with analytical vortex analysis. Intense lateral variations of
wav happen at the tip where the influence of tip vortex induction on the flow is the strongest. This
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Figure 15. Convection scheme effect on crossflow isocontours.

behavior, linked with the fact that lift should cancel at the tip, is difficult to handle numerically. The
second-order convection scheme notably improves modeling of the tip area. As underlined by Tran
et al. [18], the second-order scheme is more efficient in modeling regions of rapid velocity variation.
Reduction of false diffusion is also evident with the second-order scheme, since the axial decrease
in wav component is less intense than with the first-order convection scheme.

Figure 16 shows the induced flow angle in the plane defined by the wing surface at two stations
along the flow direction: mid-chord and 0.8cr (cr is the root chord length) upstream of the leading
edge. At the mid-chord position, the induced flow angle is simply the opposite of the induced
angle �i . Results for the three meshes and two convection schemes are presented. Results at
mid-chord were also produced using Prandtl lifting line theory with the method described by
Anderson [27] using 200 points to discretize the wing planform. The differences in induced flow
angle predictions between convection schemes are significant at mid-chord, but much less so at
the 80% upstream position. Furthermore, improvements in the mesh refinement do not seem to
diminish these differences at the 80% upstream position. These observations lead to a preliminary
conclusion that regardless of the convection scheme or mesh, using the upstream inflow angle (and
a suitable relation between this angle and the effective angle of attack of the airfoil �−�i ) instead
of the effective flow angle is a better choice for estimating the loading of a wing. Finally, it should
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Figure 16. Spanwise distributions of induced flow angles at single layer of control volumes.

be noted that an excellent agreement exists between results of Prandtl lifting line theory and the
results from the new method with second-order scheme and meshes M2 and M3: both approaches
are therefore equivalent in the treatment of the vortical wake of a finite wing.

Finally, the proposed method is used, with the second-order convection scheme, to predict values
of lift L and induced drag Di for all 24 planforms studied. Using the Prandtl lifting line adaptation
of Anderson as a reference, the performance of the method is measured by calculating the relative
differences for lift |L−LPrandtl|/LPrandtl and induced drag |Di −Di,Prandtl|/Di,Prandtl and reported
in Figure 17 as a function of taper and aspect ratio. Results obtained from a modified version of the
proposed method are shown as well: in this formulation, velocity discontinuities are not allowed at
the AS (the velocity field is continuous) but the system of forces is still prescribed using the equa-
tions of the original method. In some way, the modified method is trying to emulate a volume force
approach where the forces would be distributed over a mid-chord and 0.8cr upstream. In a CFD
adaptation of the volume force approach for the finite-wing problem, prescribing the forces from
flow properties is not obvious; the origin of the induced drag and its evaluation is not straightforward
either. The AS however represents an integrated framework that performs this task with accuracy
when compared with the results of the Prandtl lifting line adaptation of Anderson. Indeed, Figure 17
shows that the relative performance of the proposed method for lift and induced drag ranges between
5 and 10% for meshes M2 and M3, whereas much higher relative differences are measured using
the volume force approach. The ability of both methods to predict the ideal value of induced drag
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Figure 17. Relative performance of the method compared with the Prandtl lifting line.

(for a given lift) decreases when either AR or cr/ct increases and is dramatically improved by the
mesh refinement as shown by the results using mesh M3. As a rule of thumb, grid dependency has
been studied and shows that a minimum number of 1000 nodes on the surface carrying disconti-
nuities are needed for a wing planform of aspect ratio greater than 8 to give relative differences
of lift and drag close to 2% when compared with the Prandtl solution.

4.2.2. Vorticity conservation considerations. Since vorticity is not explicitly represented in the
wake (as it would be using vortex models), but is rather intrinsically handled by the CFD method,
it is interesting to verify how it is conserved in the wake of the AS. As presented in Figure 18
for the finite-wing case, the proposed verification consists in examining vorticity fluxes, or from
Stokes’ theorem, circulation characteristics in the wake. Let us define :

�W (x, y)=−
∫ +∞

−∞
w(x, y, z)dz (19)
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Figure 18. Illustrating vorticity flux conservation in the wake of a finite wing.

Then, it is expected that �W (x, y)≈�B(y) where �B is the bound vorticity of a wing section at
the spanwise location y (y=0 being at mid-span). This equality is only approximate since wake
expansion occurs, hence with increasing x , it is expected to become less valid. This is verified in
Figure 19 where it is visible that in the near wake, distribution of circulation closely matches the
bound vorticity distribution, whereas further downstream the distributions are smeared out due to
numerical and viscous diffusion. However, the circulation is not found to reach zero for spanwise
positions y>b/2, as it should be. We believe that this undesired behavior is due to the finiteness
of the domain (the integral of Equation (19) is limited by the domain extents) and to the choice
of boundary conditions on the side of the calculation domain where velocities are imposed to be
equal to the incoming velocity U∞, which prevent the perturbations induced by the wing vortices
system to be represented on the domain sides.

4.2.3. The wind turbine. In this section, rotating ASs are employed to study HAWT aerodynamics.
Loading of the AS is prescribed in the same way as for the finite wing. The CVFEM, however,
had to be adapted to the resolution of Navier–Stokes equations in a rotating frame of reference:
this issue is discussed first, and results for a small, experimental wind turbine are then presented.

4.2.3.1. Numerical implementation of the wind turbine model. Reformulation of the mathemat-
ical problem. The rotating frame of reference, in which the blades appear fixed, has been used
for simulations. In this reference frame, the governing equations are the Navier–Stokes equations
in their steady form including inertial (centrifugal and Coriolis) forces. When pressure and flow
velocity components (measured in a Cartesian coordinate system) are selected as the unknowns
to this problem, and the CVFEM formulation of Saabas [17] is used to discretize the algebraic
equations for these unknowns, numerous convergence problems arise, even for the simple case of
an advancing flow in solid rotation without obstacle (corresponding to the inlet condition of the
wind turbine problem). Investigations have determined that the convection scheme, in combination
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with the segregate solution algorithm, is inappropriate to adequately handle the convection fluxes
specifically due to the rotating component of the velocity �r (� is the blade rotational speed and
r is the distance to the axis of rotation). To resolve this convergence problem, the flow velocity V
as measured in the rotating frame of reference is split in two parts

V=Vnr −�re	 (20)

where Vnr is the velocity vector measuring the flow velocity in a fixed system of coordinates
(see Figure 20) and −�re	 is the rotational velocity vector. The velocities Vnr at every domain
node constitute the new unknowns of this problem. This separation of the velocity in two terms is
introduced in the Navier–Stokes equations∫ ∫

S
�V(V ·n)dS=

∫ ∫
S
pndS+

∫ ∫ ∫
V

��2rer −2�X×VdV (21)

where the surface integrals are taken upon a CV V of surface S with n as the outward normal
vector to the surface. The last two terms are inertial forces (centrifugal and Coriolis forces) due
to the rotation of the reference system.

Following Equations (20) and (21), the convection term is split into three terms:∫ ∫
S
�V(V ·n)dS=

∫ ∫
S
�Vnr (V ·n)dS−

∫ ∫
S
��re	(Vnr ·n)dS+

∫ ∫
S
��2r2e	(e	 ·n)dS (22)

On the right-hand side of Equation (22), the first term can readily be used to model the
contribution of convection to the discretized momentum conservation equation using Vnr nodal
values as unknowns, following the MAW scheme of Saabas [17] or the second-order scheme of
Tran et al. [18].
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Figure 20. Parameters for wind turbine study; the arrow around � indicates blade direction of
rotation (observer is upstream the blade).

The second and third terms on the right-hand side of Equation (22) are treated as constant source
terms in the numerical model when building the algebraic equations from momentum conservation
in a CV. The surface integral of the second term is calculated at Gaussian points on the surface
and mass fluxes are evaluated again using the MAW scheme.

It can be shown that the third term on the right-hand side of Equation (22), combined with the
inertial forces, will result in a total volume force given by −2�X×Vnr , where X corresponds to
the rotation vector (with direction along the axis of rotation). This volume force is, in some way,
a Coriolis force that is applied only on the non-rotating component of the velocity.

This reformulation of the governing equation has proven to be very efficient and has been
thoroughly tested on the case of an advancing flow in solid rotation without obstacle. Different
boundary and initial conditions have been used on this case and, in almost every simulation, the
solution rapidly converges toward the trivial solution Vnr =0.

Solution domain specifics: Taking advantage of the symmetry of the two-bladed wind turbine
problem, the solution domain is a hollow half cylinder as shown in Figure 21 with only one actuator
surface used to model the rotor. Depending on the flow variable solved, periodic or anti-periodic
boundary conditions are set at the surface of symmetry. As shown in the zoom of Figure 21, the
structured mesh is composed of radial lines extending from an inner radial position (set small
compared to the blade dimensions) to an outer position far from the blade. Let I, J and K be the
indices for nodes of the structured mesh, then the previously mentioned radial lines correspond
to J =constant, and providing that u, v and w are the flow components in the x , y and z axis as
shown in Figure 21, then periodicity is expected for u and anti-periodicity for v and w components
between surfaces J =1 and J =N J as summarized by the formulas in Figure 21.

Results for the TUDelft rotor: In this article, the aerodynamics of an experimental rotor designed
at Delft Technical University (TUDelft) is thoroughly studied. The TUDelft rotor is a two-bladed
HAWT having a diameter D of 1.2m that rotates (for the cases studied in the article) at 700 rpm.
An NACA0012 profile is used on the lifting part of the blade from r/R=0.3 to the tip, and
the blade has a constant chord length of 0.08m with a linear twist distribution. The blade can
be pitched at different angles; herein, blade tip pitch angles of 0, 2 and 5◦ are used. Detailed
inflow and near-wake measurements have been performed using hot-film anemometry. Information
regarding the wind turbine and the research program of TUDelft can be found in the works of
Sant [28] and Haans et al. [29].

Given the results of the finite-wing study, a structured mesh of 201×65×46 nodes is used along
axial (I ), azimuthal (J ) and radial (K ) directions to discretize the domain of total length 3.5D,
inner radius 1.510−2 D and outer radius 5D. The mesh is refined around the AS location, which
is located 0.3D upstream of the outflow boundary. As shown in Figure 22, which presents the
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Figure 21. Mesh details for the wind turbine case.

Figure 22. Axial mesh plane at actuator surface.

node distribution in the I =constant plane where the AS lies, 17×20 nodes are used to discretize
the AS.

The location of inflow and outflow boundaries relative to the AS has been studied to ensure
the independence of results, together with the influence of the spacing between axial mesh planes
in the vicinity of the AS. The final mesh design represents, in terms of total number of nodes, a
good compromise between accuracy (in terms of grid independence) and computing time.

As regards AS loading, circulation around blade sections is calculated using relative velocities
and angles of attack evaluated at the mid-chord of the blade to provide values of ‖Vav‖ and

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 62:1264–1298
DOI: 10.1002/fld



1290 C. SIBUET WATTERS AND C. MASSON

λ

C
P

0 2 4 6 8 10 12 14
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Figure 23. Power coefficient as a function of tip-speed ratio.

Cl in Equation (10). During meshing, nodes are located in the middle of the blade, as illustrated
by Figure 22, where a vertical line of nodes splits the AS into two equal parts. This practice
is comparable with vortex methods based on the lifting line concept, where the blade bound
circulation is estimated from values of velocities at control points [3].

2D experimental lift and drag coefficients are taken from [30] for a Reynolds number of 150 000.
As explained in the presentation of the AS, only lift characteristics are needed to prescribe its
loading. For all computations, the second-order convection scheme was used and an artificial
viscosity was employed to ensure stability during the convergence process; it was verified that the
level used did not influence the rotor inflow and near-wake results so that the following results
reproduce inviscid flow.

Power and thrust curves: Figures 23 and 24 present comparisons between experimental and
computed power and thrust coefficients as a function of tip-speed ratio 
 for tip-pitch angles of
0, 2 and 5◦.

Power is calculated from blade-element theory using the local flow velocity calculated by
the CVFEM (evaluated at the middle of the AS) and 2D lift and drag characteristics. Thrust is
calculated from the surface integration of pressure discontinuities over the AS. The agreement
with the experiment is much better for the thrust than for the power coefficient. The calculated
power coefficient values are close to the experiment only for the 2◦ tip-pitch angle case.


=8 case: components of velocity: To give some insight into the model results, Figures 25
and 26 present the velocity components (in m/s) calculated by the model for 
=8, corresponding
to a uniform incoming velocity of 5.5m/s with the rotor rotating at 700 rpm. The pitch angle
is 2◦. The two figures show isocontours of the axial and radial (as defined by the system of
coordinates of Figure 20) velocity components of Vnr taken either in the plane enclosing the rotor
swept surface (Figure 25) or in the axial plane that splits the blade into two halves, i.e. 	=�/2
(Figure 26). In Figure 26, the location of the AS is indicated by a straight bold line. Since only the
non-rotating components of velocity are represented, these pictures represent the flow state when
a blade reaches the vertical position. It is interesting to note that the model handles well (1) the
effect of rotation, (2) the velocity discontinuities, (3) the existence of strong vortical structures
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Figure 24. Thrust coefficient as a function of tip-speed ratio.
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emanating from both the tip and root areas of the rotor and (4) the induction of the AS on the flow
upstream of the rotor. Figure 26 is particularly striking and shows that the model can be used to
trace tip vortex trajectories.

For the particular case of 
=8, detailed experimental measurements have been obtained by
TUDelft [28, 29] using hot-film anemometry, phase averaging and novel recombination methods
to derive the 3D components of velocity. These measurements were taken both in the inflow and
near-wake region of the turbine along planes parallel to the rotor swept surface. Figures 27–29
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Figure 26. Radial component of Vnr flow is from left to right.

present comparisons at planes located 0.03D,0.05D and 0.075D (corresponding to 3.5, 6 and 9 cm)
downstream of the rotor between the numerical results and the experimental measurements for
the axial, tangential and radial components of the non-rotating velocity (in m/s). In each figure,
three radial locations are presented: r/R=0.4 (blade root area), r/R=0.7 (mid-span area) and
r/R=0.9 (blade tip area). Components of velocity are plotted against azimuthal position 	.

It can be observed that a significant bias exists between experimental measurements and model
outputs for the axial and radial components. However, it is remarkable that the shape of azimuthal
distributions of velocity components are very similar between the model and the measurements,
and that the rapid changes of the flow velocity components as a function of downstream distance
is qualitatively well reproduced by the numerical solution. Furthermore, it may be noted that
the bias between experimental and modeled components of velocity is, on the average, reduced
with increasing axial distance from the rotor. From these observations, it seems questionable to
calculate the blade loading through blade-element theory, as presented in Section 2.2. However,
Figure 30 shows a comparison between experiments (taken from [28]) and model calculations for
the axial component of velocity where the agreement is much better. Here, the rapid evolution of
axial velocity at the tip and root of the AS raises questions as to the origin of these variations. As
already observed in the case of the finite wing, this is typical of the AS representation and has to
be linked to the bound vorticity along the AS.

These disagreements between the model and the experiments can be attributed to several factors,
starting with the obvious differences between the object modeled by the AS within the CVFEM
and the real wind turbine (which is not completely porous as the AS is). Another important
factor concerns the effect of rotation on blade aerodynamics, which can dramatically change lift
and drag characteristics, hence the circulation along a blade section when compared with 2D
characteristics [31]. Similar to a blockage effect that is not taken into account by the model, the
absence of a solid boundary to model the blades of the rotor most probably influences the numerical
solution. In the central part of the rotor, the induced blockage effect might even be stronger since
local blade solidity c/r is higher. The uncertainties associated with the discretization (domain size
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Figure 27. Axial component of Vnr as a function of azimuth for different radial locations.
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Figure 28. Tangential component of Vnr as a function of azimuth for different radial locations.
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Figure 29. Radial component of Vnr as a function of azimuth for different radial locations.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 62:1264–1298
DOI: 10.1002/fld



1296 C. SIBUET WATTERS AND C. MASSON

r / R

u
x

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
3

3.5

4

4.5

5

5.5

6

6.5

7
Model

Experiment

Figure 30. Radial distribution of axial velocity at the middle of the blade (	=�/2).

and mesh, convection model, numerical dissipation) and the treatment of boundary conditions are
also cause for some of the observed discrepancies.

Finally, the AS method has recently been compared with other methods appropriate for wind
turbine aerodynamics (blade-element momentum—BEM—and vortex methods). As regards rotor
aerodynamics, the qualitative and quantitative comparisons performed show that the actuator surface
concept agrees well with the other numerical models. The AS method has, however, the intrinsic
advantages to model the blade tip vortices naturally, as well as their diffusion and evolution,
whereas BEM or vortex methods must use ad hoc, empirical models. The AS method is envisioned
to be useful for the study of the near- and far-wake aerodynamics, which is not satisfactorily
modeled by BEM or vortex models with a lower cost in terms of computational costs than the full
CFD models.

5. CONCLUSION

To model lifting devices, whether it be a wing in translation or rotation, this article proposes the
concept of an actuator surface (AS) defined as a porous moving surface that carries velocity and
pressure discontinuities as well as an induced system of forces. The origins and derivation of this
concept have been reviewed to show that it respects conservation of vorticity and energy exchange
accordingly with the onset of lift by ensuring constant total pressure in the reference frame fixed
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to the AS. 2D and 3D versions of a control volume finite-element model (CVFEM) are used to
model the inviscid flow that results from this singular surface. The implementation of the AS action
on the flow in these two methods was simplified by the integral approach of the CVFEM as regards
the discretization of the Navier–Stokes equations. In addition to the modifications pertaining to the
action of the AS, the specific adaptations to the 3D CVFEM for the study of flows in a non-inertial
rotating frame of reference are also presented. The proposed model and numerical methods are
then used to study the 2D and 3D inviscid flows of (i) a uniformly loaded segment, (ii) an actuator
disk, (iii) a finite wing and (iv) a Wind Turbines. In the first two cases, the method appears to be
accurate in the determination of the flow velocity and associated system of forces. In the case of
the finite wing, for 24 different tapered wing planforms, the AS, which takes the shape of each
wing planform, reproduces numerous characteristics of the flow (lift, induced drag and induced
angle of attack) with good accuracy compared with the Prandtl lifting line model. A modified
version of the AS is also used where velocity is not allowed to be discontinuous across the AS,
but pressure is, in an attempt to reproduce the results of a model based on the distribution of
volume forces. The results of this modified version show significant differences with the Prandtl
lifting line lift and induced drag, which imply that volume force methods that impart all of their
action on a single layer of nodes could be misguided. As a last application, the experimental wind
turbine rotor of the Technical University of Delft is thoroughly analyzed. Comparisons between
numerical model output and experimental measurements are presented for the power and thrust
coefficients and for near-wake velocity measurements. The results are encouraging. The values
of thrust coefficient calculated by the model are close to those observed in the experiments and
it was found that details of the flow structure inherent to a vortical wake are well reproduced
by the proposed model. These are good signs that the model should be appropriate to analyze
wake evolution of rotating lifting bodies like propellers, helicopters and Wind Turbines. Further
developments and case studies are needed to study the influence of the AS loading distribution
on the flow and the relative performance of this new concept versus classical concepts (vortex,
actuator-disk, volume force-based methods). On a fundamental level, the integration of viscous
drag in the flow model is also a subject of interest.
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